GIS-based multivariate statistical analysis for landslide susceptibility zoning: a first validation on different areas of Liguria region (Italy)

R. Marzocchi, A. Rovegno, B. Federici, R. Bovolenta & R. Berardi

DICCA – Polytechnic School – University of Genoa – Italy
6.9% of the territory is catalogued as landslide by the IFFI national inventory of landslide (ISPRA, 2013)

Several approaches to assess landslide hazard (Fell et al., 2008):

- **heuristic analysis** → based on geological and geomorphological criteria and local observations collected by an expert

- **statistical methods** → usually correlate an inventory of landslides occurred in the past with factors which are supposed to be responsible of slope failure (Cascini, 2008)

- process-based methods and numerical analysis → local analysis
The type of landslides involved in this study are **slides** and **flows** (according to the UNESCO WP/WLI, 1993)

→ associated to intense meteorological events

- affecting limited thickness of the loose soil
- local contributing factors related to humans (e.g. road cuts)

not only emergency management but also prevention

Land use planning supported by **landslide susceptibility zoning**
The aim
Landslide susceptibility zoning on wide area through GIS-based multivariate statistical analysis
To express objectively the landslide susceptibility in accordance with many factors

The present research
Criticality analysis of the zoning procedure to develop a guideline for the landslide susceptibility zoning, as an instrument to non-GIS and non-statistical expert users for the choice of factors to be considered.

Software GRASS GIS 7.0
Overview

- Predisposing factors to landslide
- Logistic multiple regression
- Critical analysis
- Conclusions
Literature analysis

Predisposing factors to landslide

<table>
<thead>
<tr>
<th>geological</th>
<th>Morphological</th>
<th>anthropogenic</th>
<th>climatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology</td>
<td>stratigraphy</td>
<td>Distance from tectonic alignments</td>
<td>Soil type</td>
</tr>
<tr>
<td>Natali et al. (2010)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pradhan & Lee (2010)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Paudíč & Bednářik (2002)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lee (2007)</td>
<td>(x)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Dahal et al. (2008)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Cencetti et al. (2010)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Dai & Lee (2002)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ayalew & Yamagishi (2005)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

1. Slope
2. Land use
3. Lithology
4. Aspect
5. Accumulation
6. Elevation above sea level
7. Distance from road network
8. Climatic aggressivity F_{FAO}

Proven factors of instability

Raster maps (20x20 m) **reclassified** for the area that you want to submit a zoning
Bivariate analysis

- to reduce number of classes
- to have monotonic (increasing or decreasing) trend of variables

<table>
<thead>
<tr>
<th>Land use classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Other</td>
</tr>
<tr>
<td>2. Buildings</td>
</tr>
<tr>
<td>3. Agricultural areas</td>
</tr>
<tr>
<td>4. Wood</td>
</tr>
<tr>
<td>5. Sparse vegetation</td>
</tr>
<tr>
<td>6. Bare soil/rock</td>
</tr>
</tbody>
</table>

\[
P(\text{evento}|x) = \frac{P(\text{evento} \cap x)}{P(x)}
\]
Bivariate analysis

Predisposing factors to landslide

a) F_{FAO}

b) $\log(\text{accumulation})$

c) aspect

d) slope

e) lithology

f) distance from road

g) Elevation

h) land cover
Logistic multiple regression

Generalized linear model (GLM), appropriate for dichotomous data (0 = absence of landslide, 1 = presence of landslide)

\[
P(evento|X) = \frac{1}{1 + e^{-Z}}
\]

\[
Z = \text{logit}(evento) = \beta_0 + \beta_1 \cdot X_1 + \cdots + \beta_p \cdot X_p
\]
Logistic multiple regression

1st phase: Calibration

\[P(evento|X) = \frac{1}{1 + e^{-Z}} \]

\[Z = \text{logit}(evento) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p \]

inventory of landslide (IFFI) associating:
P=1 if landslide area
P=0 if NOT landslide area

chosen factors

Estimation of regressions coefficients
Logistic multiple regression

2nd phase: Application

\[P(\text{evento}|X) = \frac{1}{1 + e^{-Z}} \]

\[Z = \text{logit}(\text{evento}) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p \]

Calculated landslide susceptibility

Estimated regressions coefficients

chosen factors
Critical points of the procedure

- Classification of chosen factors \rightarrow bivariate analysis
- Selection of the independent variables of the regression model (factors)
- Choice of the proper area to calibrate the coefficient of the regression model
- Definition of a criterion of classification of the susceptibility values
Test area

Liguria Region (Italy) and its 4 Provinces

- Genova
- Savona
- Imperia
- La Spezia
Selection of the independent factors

Defined the calibration area...

AIC index (Akaike’s Information Criteria)

If the adding of a variable has a positive effect on the model, the values of AIC have to decrease
The proper area to calibrate

Defined the factors...

R^2 correlation coefficient → indication of the influence factor of the j-th factor on the susceptibility

- Slope
- Land use
- Lithology
- Accumulation
- Aspect
- Elevation
- Distance to roads
- F_{FAO}

Critical analysis

Dicca - Polyt

Versity of Genoa - Italy
Factors vs calibration area

Regression coefficients bj → reliability of the factors

Reliable factors
- slope
- Land use
- accumulation
- Distance from road
Factors vs calibration area

Lithology map

Importance of spatial variability of factors

FFAO map
Factors vs calibration area

R^2 correlation coefficient → indication of the influence factor of the j-th factor on the susceptibility

- **Critical analysis**

<table>
<thead>
<tr>
<th>Factor</th>
<th>Piemonte</th>
<th>Liguria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.000136</td>
<td>0.000659</td>
</tr>
<tr>
<td>land use</td>
<td>0.000172</td>
<td>0.000342</td>
</tr>
<tr>
<td>lithology</td>
<td>0.007310</td>
<td>0.000227</td>
</tr>
<tr>
<td>dist road accumul.</td>
<td>0.000054</td>
<td>0.000196</td>
</tr>
<tr>
<td>aspect</td>
<td>0.000045</td>
<td>0.000143</td>
</tr>
<tr>
<td>elevation</td>
<td>0.001521</td>
<td>0.000033</td>
</tr>
<tr>
<td>FFAO</td>
<td>0.001026</td>
<td>0.000032</td>
</tr>
<tr>
<td>Total</td>
<td>0.0070</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

DICCA – Polytechnic School – University of Genoa – Italy
Classification of the susceptibility values

Estimated values of susceptibility

- Relative results
- Very small values (order of $10^{-9} - 10^{-8}$)

Classification in 3 susceptibility level

low moderate high
Results and validation

- Low
- Moderate
- High

↑ signs of instability
↑ incipient sliding
Results and validation
Results and validation
First conclusions

• Importance of preliminary analysis of the characteristics of the area to be subjected to zoning → bivariate analysis

• Reliable factors: slope, land use, accumulation, distance to roads

• Importance of spatial variability of factors

• Strong influence of the characteristics of the calibration area on zoning results

• Calibration area: not too small, to be representative of all the conditions present in the area to be subjected to zoning, but of more homogeneous characteristics as possible
Future work

• Guidelines for the susceptibility zoning for non-GIS and non-statistical expert users

• Maps with indications of most suitable design solutions according to the characteristics of the critical zones
Thank you for your attention

This work is financed by the national research program (PRIN 2010-2011) called “Mitigation of landslide risk using sustainable actions” coordinated by University of Salerno.